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Ahstract

In recent comlmrisons of symbolic and neural learning

algorithms, it Ires hecn shown that the ID3 s),mbolic
learning algorithm l_eC[))rms better than a neural mrtwork
trained using the backpropagation learning rule.
llowever, none of the previous studies rompared the

pelfi)rmance of the two lea.rning approaches for distortion
invariant object recognmon. Within this domain, we

compared the ID3 system and a higher-order neural
network (tlONN). Our results sl,ow that tfONNs are

superior to ID3 with respect to recognition accuracy
whereas, on a sequential machine, ID3 classifies

examples ]'aster once trained. A further advantage of
tlONNs is the small training set required, tlONNs can

be trained on just one view of each object, whereas ID3
needs an exhaustive training set.

Introduction

Both symholic and neural network (counectionist)

learning algorithms have been developed for the inductive
acquisition of concepts from examples. The objective of
both approaches is to learn which features determine the
class of an object and use this knowledge to classify new

objects accurately. The two approaches have been
compared recently[I-3] on data sets typically usezl to test
symbolic learning algorithms, such as soylyean diseases
and chess end games. However, none of the comparisons
dealt with the performance of the two approaches on a
data set neural network algorithms are typically applied to

- object recognition.

This paper presents results of experiments comparing the
performance of the ID3 symbolic learning algorithm[4]
with a Ifigher-order neural network (IIONN)[5-7] in the
distortion invariant object recognition domain. In this
domain, the classification algorithm needs to be able to

distinguish between two objects regardless Of their

position in the input field, their in-plane rotation, or their

scale.

Background

ID3

The ID3 approach to pattern recognition and classification
consists of a procedure for building an efficient decision
tree from a set of training objects represented by
attributes or feature values. At each node of the tree, the

training objects are partitioned based on the value of the
feature which provides the most information. The

training set is recursively decomposed in this manner
until the tree can correctly classify all the objects in the

training set. A detailed description of the algorithm used
to build a decision tree is presented in Quinlan[4].

tligher-order neural networks

A neural network is constructed of many simple elements
called neurons connected with weighted arcs, as illustrated

in Figure 1. As in the ID3 approach, the input to a
neural network is a set of feature values. The learning

process consists of adjusting the weights until the
network is able to associate these feature values with the
correct training object. Once trained, the network
classifies novel examples by propagating the feature
values of the new object through the network and

summing the weighted products. Mathematically, the
class membership decision is a function of the output
node values, denoted by Yi for node i, which are calculated

by:

Yi = O(Zj wij xj), (1)

where O is a nonlinear threshold function, the xj's are the

excitation values of the input nodes, and the
interconnection matrix elements, wij, determine the

weight that each input is given in the summation.
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Figure 1: One layerofa neural network.
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A network with M inputs and one output using only nh
order terms requires M-choose-r interconnections. For

higher orders, this number, which is on the order of Mr,
is clearly excessive. In order to overcome this
combinatoric explosion of interconnections, invariances
can be built directly into the network architecture by
using information about relationships expected between
the input pixels.[5-7] To achieve invariance to
translation, scale, and in-plane rotation, a third-order
network can be used. The output for a strictly third-order
net is given by the function:

Yi = O (Zj Yk ZI wijkl xj Xk Xl). (3)

Triplets of inputs form triangles with included angles (e,

13, 7) as shown in Figure 3.

Note that the su,mnation within the parenthesis in Eq.

(1) is a function of the individual input pixels, xj. No

advantage is taken of any known relationships between
the inputs. Thus, although multi-layer, first-order
networks can learn translation, scale, and in-plane
rotation invariances, they require a great deal of training,
and produce solutions that are specific to particular

training sets.

In contrast, higher-ordex neural networks (HONNs) are
characterized by connections to neurons from
combinations of inlmtS and can therefore have invadance
information built into the network architecture. The

omput of a node in a general higher-order neural network
is given by:

Yi= O (Ej wij xj + I:j r k wijk xj Xk (2)
+ Zj Zk El Wijkl xj Xk Xl + ...).

A diagram of a neural network utilizing only third-order
terms is shown in Figure 2.
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Figure 2: A third-order net with 4 inputs and 1
output. Inputs are fi_ multiplied together (at
and then multiplied by a weight before being
salmrned.

x3

Figure 3: Because the included angles are invariant
over scale, rotation, or translation, invadance is built
into the network by using the same weight for all
similar triangles formed by input triplets.

When the object is translated, scaled, or rotated in-plane,
the three points in the same relative positions on the
object still form the included angles (a, 13,T). In order
to achieve invariance to all three distortions, all sets of

triplets forming similar triangles are connected to the
output with the same weight. That is, the weight for the

triplet of inputs xj, Xk, Xl is constrained to be a function
of the associated included angles ct, 13,and y.

Wijkl = wia13-r"= wil3Ya = wi_,c_13.
(4)

There are numerous advantages to this approach. First,
the invariances are built directly into the network and
require no learning to paxxluce. Also, these invariances
apply to any input pattern learned by the network. In
contrast, it is believed that the hidden layers in multi-
layered first-order networks represent the invariances.
tlowever, that is not usually obvious from looking at the
final weights produced by the learning process. Finally,
a HONN can perform nonlinear discrimination using only
a single layer. Thus, rapid convergence can be achieved
by using the simple learning rule:

AWijkl = (ti - Yi) XjXkXl, (5)



where ti is the expected training output for node i and Yi

is the actual output for node i.

Experimental Comparisons

Choice of algorithms

ID3 was chosen as a representative of the symbolic

learning approach primarily for consistency with previous

comparisons{I-3], in which it was studied because of its

simplicity and popularity. It is the ancestor of several
commercial rule induction systems and has been

extensively tested on large data sets. Further, in

experimental comparisons, ID3 generally performs as
well or better than other symbolic learning algorithms[8].

To represent the neural network approach, we chose
higher-ordex neural networks instead of the more popular
backpmpagation (backpmp) trained network for several
reasons. First, in previous studies{6,7], it was

demonstrated that for distortion invariant pattern

recognition, IIONNs are superior to innlti-layercd first-
order backpropagation trained networks in terms of

training time, training set size, and accuracy. Second, in

previous experiments[I-3], it was shown that backprop
takes much lont;er to train than 1133. Because ItONNs

use a simpler learning nile than hackprop, it was

hypothesized that a tlONN is more comparable to ID3.
Finally, though IIONNs compare quite favorably with
other neural networks for distortion invariant object

recognition, it is unknown how they perform compared

with non-neural techniques.

class 0

Training sets

Both algorithms were trained using the T/C problem[9]

and a simpler variation, the T/S pmhlem. As described
in Rumelhart, in the T/C problem, both characters are
constructed of 5 squares, as illustrated in Figure 4, and

the problem is to discriminate between them independent
of translation or zolzllion. When lht'..';c; two patterns are
considered over all translations ,'rod 90 degree rotations,

configurations of triplets of squares must be examined to
discriminate between them. If only distances between

pairs of pixels are considered, the |xancxns are equivalent.
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Figure 4: The T/C

portrayed in a 9x9
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recogmtion problem,

pixel input field.

The T/S problem is similar except that there are only two
unique 90 degree rotations possible with an S, as shown
in Figure 5. Thus, there are only six possible rotated

images as opposed to eight for the T/C problem.
Q

Figure 5: The two unique 90 degree
rotations of an "S" in a 3x3 pixel input

field.

The two algorithms were evaluated using three different

training sets. Training set one was designed to determine
the ability of the two algorithms to learn to distinguish
between two objects regardless of an object's in-plane

angular orientation of 0, 90, 180, or 270 degrees. The
second training set was concerned only with whether the

algorithms can learn to distinguish between two objects

in a specified angular orientation regardless of changes in
scale or position in the input field. Finally, the third
training set combined the previous two training sets in
c_ater to determine the capabilities of the algorithms with

respect to all three distortions - scale, position, or angular
orientation- simultaneously.

As stated above, invarianees can be built into the
architecture of a HONN and a third-order neural network

can learn to distinguish between two objects regardless of

position, scale, or in-plane rotation based on just one
view of each object. Therefore, the HONN algorithm
was trained on just one view of each object. In contrast,
in order for ID3 to guarantee 100% accuracy, it is

necessary (though not sufficient) for it to be trained on ,an
exhaustive set of views of the two objects. The number

of images comprising each training set is cited below.

To evahmte the algorithms on only rotation invariance,
case 1, it was trained on images drawn in a 3x3 pixel

input field. The upright images, as in Figure 6a, were
used for training the HONN and all versions of the

images rotated by 90 degree increments were used for
training I133. For the TIC problem, as shown in Figure
6b, the training set for I133 consisted of eight images,
while for the T/S problem, it consisted of only six.
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Figure 6a: Tile T/C problem in a

3x3 pixel input rid&

because the HONN is trained on just two objects. If the
algorithm successfully learns to recognize an object, it is
guaranteed to recognize all distorted versions of that
object. If it cannot learn to recognize an object, testing
distorted versions of that object is comparable to random
gmessing.

Results

Class

Figure 6b: The eight possible 90 degree rommd

views of a T and a C,

For case 2, in order to demonstrate a reasonable amount
of translation and scale, a 9x9 pixel input field was used,

as in Figure 4. Again, only two images were necessary
to train a ltONN, while an exhaustive set was used for

ID3. Considering all the possible positions for all three

possible scales of the images, the training set consisted

of 150 images for the TIC problem and of 132 images for
the T/S problem.

To demonstrate all three distortions simultaneously, case
3, a 9x9 pixel input field was used. For the HONN
algorithm, cases 2 and 3 are equivalent since all three
distortions are built into the architecture. An exhaustive

set for ID3 considering translation, scale, and rotation

distortions consists of 600 images for the T/C problem

and 396 images for the TPS problem.

Case 1: Rotation invariance only

The ItONN learned to distinguish between a T and a C

regardless of in-plane rotations in a 3x3 pixel input field
in 55 training passes for a total training time of 2

seconds. For the T/S problem, it took 23 passes and

only one second of training time.

For the T/C problem, I133 could not learn to distinguish
between the rotated versions of the two objects.

Specifically, for the four images shown in Figure 7, the
features do not provide sufficient information for I133 to
properly differentiate between the two classes. The

feature, or pixel, values are shown in Table 1. Clearly,

using the value of only one feature at a time is inadequate
for deciding which class an object belongs to.

Class 0

Class I

Figure 7: The features, as used by ID3, do not

)rovide sufficient information to properly
differentiate between the two classes.

Implementation details

Both algorithms were implemented in C, and a Sun 3/60
with 30 MB of swap space was used for simulations.
The input pixcls comprising the image were used as

featt,res and only binary images were considered, limiting
the feature vah,es to either 0 or i. Thus, for the 3x3

pixcl input field, there are 9 features, while for the 9x9
pixel field, there :ire 81 features.

The no nots4: v,',r;i,m ,ff 11)3 dr.sc,iiwd i,I Quinhm[.1] was

ttsed and neither ID3 nor the I1ONN algorithm was
carefully optimized. Further, both algorithms were
designed for 100% accuracy. In _he rest_lts that follow,

the statement that an algorithm was not able to learn to

distinguish between two images means that it could not
distinguish between them with 100% accuracy. Less

accurate versions of the algorithms were not compared

Table I: Feature values of the

_agesin_gure7.

p_el# 123456789

111010010

I00Iil100

II0010110
I01111000

class

For the TIS problem, ID3 learned to distinguish between
the rotated views of the characters in less than one
second. Table 2 shows the feature values of the six

training images. The resulting tree, shown in Figure 8,
can be easily derived.



Table2: Featurevaluesof all the

rotated views of a T and an S. Class 0

represents all q_s and class 1 represents
all S's.

pixel # 123456789

111010010

001111001

010010111

100111100

011010110

100111001

class
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Figure 8: A decision tree constn_ctcd for tile
data in Table 2. "File ncxles (circled) repro.sent lhe

feature number, lhe leaves (bracketeA) icpresent

the class, anti the branches are marked with the

possible feature values.

Case 2: Translation and scale invariance

Tile HONN learned to distinguish between a T and a C

regaalless of translation, scale, or in-plane rotation in a
9x9 pixel input field in 55 passes and 57 seconds of
training time. For the T/S problem, it learned to

correctly classify all distorted views of tile two images in

23 passes for a training time of 25 seconds.

ID3 created a decision tree in 30 seconds for the T/C

problem and 33 seconds for the T/S problem.

Case 3: Simultaneous scale, translation and

rotation inwlriance

As mentioned previously, case 2 and 3 are equivalent for
the HONN algorithm since all three distortions are built
into the architecture. Thus, the results for this case are

the same as for ease 2.

For the TIC problem, because ID3 was unable to learn
to distinguish between the four images in Figure 7 and
those same images are included in the exhaustive training

set used in case 3, it was not tested on all three
distortions simultaneously. For the T/S problem,

though it was able to learn to distinguish between the
two images regardless of their scale and position, or
orientation, it was unable to learn the three distortions

simultaneously.

Summary

Training set size

Because invariances were built directly into the
architecture of the third-order neural network, it needed to

be trained on only one view of each object. In contrast,

in order for ID3 to guarantee 100% recognition accuracy,

it was necessary, though not sufficient, for it to be
trained on all views of each object. Thus, HONNs

require many fewer images in the training set. This is
useful if generating training and testing data is time

consuming or otherwise difficult.

Recognition accuracy

For both the T/C and the T/S problems, the HONN was

trained to distinguish between the two images regardless

of their position, scale, or in-plane rotation in less than
one minute. ID3, on the other hand, was unable to

distinguish between either set completely. For the T/C

problem, it could learn to distinguish between translated
and scaled versions, but not rotated versions. For the T/S

problem, it could learn all three distortions separately,
but not simultaneously. In addition to the above results.
HONNs have been extensively tested on numerous other

objects, including a Space Shuttle Orbiter and an F-18
aircraft. A third-order network has learned all the

examples presented to it within a small number of

training passes (usually less than 50).

Training time

From the above results, it is difficult to compare the two

approaches in terms of learning time because ID3 was
unable to learn either problem completely. Also, for
rotated versions, I1)3 was trained for just 90 degree

rotations whereas the HONN was designed to be

automatically invariant to rotations by any angle,.

In terms of testing, however, ID3 runs faster than a
HONN. All the trees built for the above examples were

fairly simple. The deepest tree had 60 levels and thus at
most 60 comparisons. In a third-order net, triplets of

inputs must be combined and then multiplied by their
corresponding weight. For a 9x9 pixel input field, there
are 81-choose-3 triplet combinations and thus 85,320

multiplications.



These results are valid only for implementations of the
two algorithms on a uni-processor computer. The
IIONN algorithm learns (and subsequendy uses) each
weight independently of the rest. Therefore, a large
speedup can be attained by running a parallel
implementation on a multi-processor computer, such as
the Connection Machine. However, since ID3 is based
on the divide-and-conquer approach, it can also be

parallelized to some degree. A fair comparison of the two
algorithms can therefore only be based on the parallel
version of both approaches-

Conclusions

Using a version of the T/C problem described in
Rumelhart[9] expanded to include scale distortions, as
well as a simpler variation of it, the T/S problem, we
have shown that for recognition of objects regardless of
their in-plane rotation, position in the input field, or
scale, third-order neural networks are superior to I133 in
terms of recognition ability. Additionally, HONNs need
to be trained on just one view of each object, whereas
ID3 requires an exhaustive training set. Thus, if training
data is difficult to obtrain, HONNs have an advantage

over ID3. Finally, the results for training lime were
inconclusive because ID3 was unable to learn to

distinguish between characters given all three distortions
simultaneously, ttowever, because I133 creates very
simple decision trees for the objects it learns
successfully, it can classify examples faster than a HONN
running on a sequential machine.
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